
14 The Delphi Magazine Issue 32

Beating the System:
Delphi Meets IntelliMouse
Adding IntelliMouse support to your Delphi applications
by Dave Jewell

Having recently taken delivery
of a new Dell PC [was that a

gloat or three I heard there, Dave?
Ed], and spent some time playing
with the Microsoft IntelliMouse
which accompanied it, I decided
that it would be fun to write an
article on how to add IntelliMouse
support into your own Delphi
applications.

As you will doubtless be aware,
the latest Microsoft mouse is
unusual in that it includes a small
rubberised wheel located between
the two conventional mouse but-
tons. If you’re using a recent Micro-
soft package, such as Office 97,
you’ll know that this wheel can be
used to scroll the active window in
the current program. This is very
convenient because, under normal
circumstances, if you’re working
with a maximised application and
you wish to scroll the window, you
have to move the mouse well away
from the area where you’re work-
ing in order to reach the scroll bar
at the extreme right-hand edge of
the screen. With the clever new
mouse wheel, you can scroll the
window without moving anything
except your index finger. This
might sound like the ultimate in
slothfulness, but once you’ve tried
it you won’t want to go back to the
old way!

And Then There
Were Three... Again!
So how easy is it to add Intelli-
Mouse support to a Delphi applica-
tion? In this article, I’m going to
provide code which will enable you
to do just that. Let’s get the really
simple stuff out of the way first.
Although it’s not obvious until
you’ve pressed it, the IntelliMouse
is actually a three button mouse:
the third (middle) button is
located under the wheel itself and

you press the button by depress-
ing the wheel rather than rolling it.

It’s amusing to note that, in this
respect, Windows has gradually
come full circle. Back in the early
days of Windows, three-button
mice were relatively common-
place. The more buttons a mouse
had, the better it was (at least,
according to the three-button
mouse manufacturers). But the
public were not fooled: they soon
realised that very little software
was written to take advantage of
the third button. In fact, very little
software was written to use the
second button on a mouse! Indeed,
if you’re as long in the tooth as I am,
you may remember that under
Windows 1.0, Microsoft recom-
mended that software should be
designed to work without any
mouse at all. The mouse was very
much an optional extra. It wasn’t
until the relatively recent launch of
Windows 95 that Microsoft
decided to make serious use of the
second button through (for exam-
ple) context menu handlers in the
shell and popup menus in their
Office suite.

Responding to the third mouse
button is the easiest aspect of
IntelliMouse compatibility. That’s

because the messages generated
by the third mouse button are
simply the old, familiar third-
button messages which have been
built into Windows since version
1.0. These are defined in the file
MESSAGES.PAS file, as shown in
Listing 1.

Because Delphi already under-
stands these messages, we can
make use of them by just writing a
message handler procedure in the
usual way. Suppose, for example,
that you’re writing a drawing appli-
cation and you want to use the
middle mouse button to select all
the objects on the current page.
Listing 2 shows how easily this
could be done.

In the same way, you can do
custom things when the middle
button is released and when it’s
double-clicked.

There are a couple of important
points to make here. Firstly, you
should be clear that these middle-
button messages will be generated
for any three-button mouse. This is
why I say that supporting the third
button is the easiest aspect of
IntelliMouse support: you don’t
need to check for the presence of
an IntelliMouse in the way that (as
you’ll see in a moment) we need to

WM_MBUTTONDOWN = $0207; // middle button down
WM_MBUTTONUP = $0208; // middle button up
WM_MBUTTONDBLCLK = $0209; // middle button double-click

➤ Listing 1

TsuperDraw = class (TForm)
private
{ Private declarations }
procedure MiddleButtonClicked (var Msg: TMessage); message wm_MButtonDown;

end;
...
procedure MiddleButtonClicked (var Msg: TMessage);
begin
// Code to select all objects goes here...

end;

➤ Listing 2

16 The Delphi Magazine Issue 32

do when using the mouse wheel.
Your program doesn’t know, and
shouldn’t care, whether those
middle button messages are gener-
ated by an IntelliMouse or by an
ancient three-button mouse that
was produced when Windows 1.0
was young. Thus, you cannot
assume you’ve got an IntelliMouse
just because you’re receiving
middle button messages.

Secondly, you should be aware
that the user may have configured
the middle button to do something
non-standard. For example, look at
Figure 1. This shows the Mouse
Properties dialog which is dis-
played when you select the Mouse
applet in the Control Panel. Per-
sonally, I like to enable the middle
button and specify that I want it to
return an F1 keystroke. You’ll find
that this is terrific when working in
the Delphi IDE: you can double-
click the left mouse button to high-
light a function name and then
press the mouse wheel to bring up
context-sensitive help on that
function, all with no wrist-action
whatsoever!

So Let’s Get Rolling....
Of course, the real fun starts when
we begin interacting with the
mouse wheel. In order to do this,
we need to determine whether an
IntelliMouse is installed and
whether wheel support is cur-
rently enabled. The bad news is
that Windows 95 doesn’t support
the IntelliMouse natively (to use

➤ Figure 1: This is
the Mouse
Properties
dialog accessed
from the Mouse
applet in the
Control Panel.
If Microsoft's
IntelliPoint
software is
in use you
can change
a number of
IntelliMouse
options.

Microsoft’s jargon). What they
mean is that mouse wheel support
isn’t built-in and doesn’t happen
automatically. Currently, Windows
95 doesn’t provide built-in support
for the IntelliMouse, but NT 4.0
does. As you’d expect, both NT 5.0
and Windows 98 will include
built-in support. Does this mean we
can’t use the mouse-wheel under
Windows 95 or pre-4.0 versions of
NT? No, it just means we have a
little extra work to do.

Take a look at Listing 3, which
illustrates the basic idea. This is a
complete, ready-to-run program
called MouseDemo, the source
code for which is included on this
month’s disk. This code illustrates
how to receive mouse wheel mes-
sages in an operating system inde-
pendent manner.

As you can see, the FormCreate
routine calls another method,
called IntelliMouseInit, which is
where the real work gets done.
Inside IntelliMouseInit, the first
thing we do is invoke the local
NativeMouseWheelSupport routine to
determine if we’re running an oper-
ating system that provides native
mouse support. This code simply
uses the API GetVersionEx call to
determine the operating system
version: if it detects that we’re run-
ning on NT version 4.0 or later, it
gives the thumbs up. Similarly, the
green light is given if it detects that
we’re running Windows version 5.0
(also known as Windows 98) or
higher.

Note that the code I’ve written
assumes that the shrink-wrap
version of Windows 98 is going to
return a major version ID of 5. This
is consistent with Windows 95
returning 4. Unfortunately, the
current version of Windows 98
(beta 3) resolutely continues to
return a major version ID of 4, and
you’ll see that I’ve deliberately
added a most unpleasant hack to
get around this. At some future
point, you should modify the
NativeMouseWheelSupport routine
according to whatever final
version numbers Microsoft
implement for Windows 98.

If the NativeMouseWheelSupport
function returns True, then things
are dead easy: we can call the Get-
SystemMetrics routine, passing it a
value of sm_MouseWheelPresent to
determine if an IntelliMouse is
installed. Similarly, calling System-
ParametersInfo with the spi_Get-
WheelScrollLines specifier will tell
us how many lines to scroll a
window for each ‘nudge’ of the
mouse wheel (this is user-
configurable in the Mouse Proper-
ties dialog via the Control Panel
applet). Finally, if native mouse
wheel support is provided by the
operating system, we know that
when the wheel is turned, the
active window will receive
Windows messages with the value
wm_MouseWheel.

Easy peasy, eh? Unfortunately,
things are a little more complex
when the operating system
doesn’t provide native Intelli-
Mouse support. Under these cir-
cumstances, we have to do a little
spade-work for ourselves. The first
job is to search for a hidden top-
level window with the name MouseZ
and the class Magellan MSWHEEL.
This window is created by Micro-
soft’s bolt-on (ie non-native)
IntelliMouse support software. If
the window doesn’t exist, then we
can forget the whole deal, mouse
wheel support isn’t installed. If the
window is found, then we need to
send a couple of messages to the
window in order to get the
information we need.

To do this, we need to make use
of the RegisterWindowMessage rou-
tine, an API call which you may not

April 1998 The Delphi Magazine 17

be familiar with, since it’s not often
used. In a nutshell, you call this
routine passing it the name of a
custom message that you want to
define. In turn, the routine will give
you back an integer value which
you should use in subsequent
SendMessage calls (assuming you
generate the message) or should
look out for in your window proce-
dure (assuming you receive the
message). Microsoft adopted this
strategy because they obviously
didn’t want people defining their
own custom Windows message
numbers: all sorts of conflicts
would arise. In order for this
scheme to work properly, Regis-
terWindowMessage must return the
same message number for two
different processes which register
the same message name. In this
way, communication can then be

established between different
processes. All they have to agree
on is a message name: no hard-
wired message number is required.

To determine if wheel support is
enabled, we have to send a special
message to the hidden Intelli-
Mouse window. But the number of
this message isn’t defined by
Windows itself: we can only dis-
cover it by calling RegisterWindow-
Message with the pre-defined
MSH_WHEELSUPPORT_MSG string.
Having got the corresponding mes-
sage number, we then send this
message to the hidden window,
checking the result of the SendMes-
sage call. If true, then mouse wheel
support is enabled.

But we’re not quite out of the
woods yet. We also have to query
the invisible window to determine
the number of scroll lines which

correspond to each wheel ‘nudge’
and to do that (you’ve guessed!)
we need to send another special
message number, which necessi-
tates another call to the Register-
WindowMessage routine. Finally, we
call this same API routine one
more time in order to get the
custom message number used by
the IntelliMouse software when
sending mouse wheel movement
notifications to the focused
window: this corresponds directly
to wm_MouseWheel message on plat-
forms that natively support the
IntelliMouse.

At this point, you’re probably
asking yourself why Microsoft did
things this way? Why couldn’t they
make things look the same even on
the non-native platforms? Well, I

➤ Listing 3

unit UMouseDemo;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, ExtCtrls;

type
TForm1 = class(TForm)
Panel1: TPanel;
procedure FormCreate(Sender: TObject);
private
// True if IntelliMouse + wheel enabled
fIntelliWheelSupport: Boolean;
// message sent from mouse on wheel roll
fIntelliMessage: UINT;
// number of lines to scroll per wheel roll
fIntelliScrollLines: Integer;
procedure IntelliMouseInit;
procedure WndProc(var Message: TMessage); override;
procedure WMMouseWheel(var Message: TMessage);
message wm_MouseWheel;

public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
IntelliMouseInit;

end;
procedure TForm1.WndProc(var Message: TMessage);
function GetShiftState: Integer;
begin
Result := 0;
if GetAsyncKeyState (vk_Shift) < 0 then
Result := Result or mk_Shift;

if GetAsyncKeyState (vk_Control) < 0 then
Result := Result or mk_Control;

if GetAsyncKeyState (vk_LButton) < 0 then
Result := Result or mk_LButton;

if GetAsyncKeyState (vk_RButton) < 0 then
Result := Result or mk_RButton;

if GetAsyncKeyState (vk_MButton) < 0 then
Result := Result or mk_MButton;

end;
begin
{ If message is non-native, eat non-native message and post
a native message. We don't call Inherited, thus ensuring
original message is discarded. }

if (Message.Msg = fIntelliMessage) and
(fIntelliMessage <> wm_MouseWheel) then begin
{ Need to convert non-native info into native format }
PostMessage(Handle, wm_MouseWheel, MakeLong(
GetShiftState, Message.wParam), Message.lParam);

end else
Inherited;

end;
procedure TForm1.WMMouseWheel(var Message: TMessage);
begin

// Application specific code goes here...
end;
procedure TForm1.IntelliMouseInit;
var
hWndMouse: hWnd;
mQuerySupport: UINT;
mQueryScrollLines: UINT;
function NativeMouseWheelSupport: Boolean;
var
ver: TOSVersionInfo;

begin
Result := False;
ver.dwOSVersionInfoSize := sizeof (ver);
// For Windows 98, assume dwMajorVersion = 5
// For NT, we need 4.0 or better.
if GetVersionEx (ver) then case ver.dwPlatformID of
ver_Platform_Win32_Windows :
Result := ver.dwMajorVersion >= 5;

ver_Platform_Win32_NT :
Result := ver.dwMajorVersion >= 4;

end;
{ Quick and dirty temporary hack for Windows 98 beta 3 }
if (Result = False) and
(ver.szCSDVersion = ' Beta 3') then
Result := True;

end;
begin
if NativeMouseWheelSupport then begin
fIntelliWheelSupport :=
Boolean (GetSystemMetrics (sm_MouseWheelPresent));

SystemParametersInfo(spi_GetWheelScrollLines, 0,
@fIntelliScrollLines, 0);

fIntelliMessage := wm_MouseWheel;
end else begin
{ Look for hidden mouse window }
hWndMouse := FindWindow ('MouseZ', 'Magellan MSWHEEL');
if hWndMouse <> 0 then begin
{ OK, window is there but is wheel support enabled? }
mQuerySupport :=
RegisterWindowMessage('MSH_WHEELSUPPORT_MSG');

if Boolean(SendMessage(hWndMouse, mQuerySupport,
0, 0)) then begin
{ We're in business get the scroll line info }
fIntelliWheelSupport := True;
mQueryScrollLines :=
RegisterWindowMessage ('MSH_SCROLL_LINES_MSG');

fIntelliScrollLines :=
SendMessage (hWndMouse, mQueryScrollLines, 0, 0);

{ Finally, get the custom mouse message as well }
fIntelliMessage :=
RegisterWindowMessage ('MSWHEEL_ROLLMSG');

end;
end;

end;
if (fIntelliScrollLines < 0) or
(fIntelliScrollLines > 100) then
fIntelliScrollLines := 3;

end;
end.

18 The Delphi Magazine Issue 32

accept that patching the GetSys-
temMetrics and SystemParame-
tersInfo routines in situ would
have been messy, but why the dick-
ens didn’t they specify that the
mouse wheel notification message
would be $020A on both native and
non-native platforms? As I’ve
observed in previous articles,
Microsoft are not exactly in the
first rank when it comes to making
life easier for the developer...

OK, so we’ve called Intelli-
MouseInit and we know that our
form is going to receive special
mouse wheel notification mes-
sages, the message number being
stored in the fIntelliMessage field.
Unfortunately, Object Pascal won’t
let us do this:

procedure WMMouseWheel(var
Message: TMessage);
message fIntelliMessage;

In other words, we can’t use the
contents of a variable as the mes-
sage index, we have to come up
with something that the compiler
can evaluate as a constant (this is
why I say life would have been
simpler if Microsoft had used
wm_MouseWheel for both native and
non-native cases). In order to get
around this problem, I decided to
override the form’s WndProc routine
as shown in Listing 3. The WndProc
method effectively gets first crack
at all the messages sent to a
particular VCL windowed control.
Here, I check if the message being
received is the custom mouse-
wheel notification. If it is, and if
we’re running non-native (the mes-
sage isn’t equal to wm_MouseWheel),
then I throw away the message and
post a new message using the
native message format. See later
for an explanation of what I mean
by this. In effect, the WndProc code

➤ Figure 2: Just an over-sized
TPanel being used to enable
the vertical scrollbar of a
TForm, but it shows how to
implement IntelliMouse
scrolling in your Delphi
programs under platforms
that do and don't support
the mouse wheel natively.

ensures that the application gets
sent the same message number, in
the same format, irrespectively of
whether or not it’s running on a
platform that provides native
support.

And now we’re home and dry.
With this change, you can write a
message handler, WMMouseWheel as
shown in the code listing, which
responds to wm_MouseWheel mes-
sages. This handler doesn’t know
or care whether the messages it
receives were generated natively
or posted from the WndProc code,
the remainder of the application
code can be platform independent.

Anatomy Of The
wm_MouseWheel Message
So what exactly is contained in the
wm_MouseWheel message? Firstly,
the mouse co-ordinates are stored
in the low and high words of the
lParam field, the horizontal
co-ordinate being in the low-order
word and the vertical co-ordinate
in the high-order word. As with all
wm_MouseXXX messages, these are
screen co-ordinates, ie relative to
the top-left corner of the screen.

In addition, this message also
encodes a ‘notch’ count, and an
indication of what modifier keys
were pressed when the mouse
wheel rotation took place. The
Microsoft IntelliMouse has 18 little
‘notches’ (the fancy American
word is detents) spaced evenly
around the mouse wheel. This, of
course, means that each notch cor-
responds to a 20 degree rotation of
the wheel. The mouse is designed
in such a way that you can’t get any
finer resolution than this: if you
stop the wheel between notches,
nothing will happen. Although I
haven’t yet stripped my mouse
down to its bare essentials, I imag-
ine this is achieved using a small

micro-switch making contact with
an 18-toothed cog.

The wm_MouseWheel message sig-
nifies not only that the mouse
wheel has been rotated, but it also
tells the application how many
notches have been traversed. In
other words, you shouldn’t
assume that you’ll get one mes-
sage for each notch. The Microsoft
documentation is vague but the
implication is that if the wheel is
turning quickly, the operating
system might bundle up a number
of ‘notches’ into a single wm_Mouse-
Wheel message. So how does this
message encode the number of
notches? Thereby hangs a tail!
(Get it? Mouse? Tail? Oh, please
yourselves...) [Never knew you
were a Frankie Howerd fan, Dave!
Ed].

The notch count is always multi-
plied by a factor of 120. Thus, if the
wheel is moved by one notch, then
we’ll receive a notch count of 120,
two notches and we’ll get a value of
240, and so on. What’s the reason
for this? Well, in this particular
case, there is some method to
Microsoft’s madness! When
designing the IntelliMouse API,
they chose to allow for the possi-
bility of higher resolution mouse
wheels being produced in the
future, either by Microsoft or by
others. I’ve already mentioned
that a single notch corresponds to
a 20 degree rotation of the mouse
wheel. Now imagine some future
mouse wheel that gives a resolu-
tion of two degrees or 180 notches.
In this case, the mouse wheel
might generate a wm_MouseWheel
message which returns a value of
12 (120/10 = 12) for each notch
that’s traversed. If you want to
look at things more simply, just
think of the IntelliMouse as report-
ing wheel rotation in units of one
sixth of a degree.

The general idea is that the value
of 120 represents a threshold
below which you should ignore the
message. If you want to be abso-
lutely correct, your software
shouldn’t assume that it will
receive rotation counts of at least
120. Instead, it should accumulate
rotation counts until at least a
value of 120 is reached. At this

20 The Delphi Magazine Issue 32

point, it should take some
application-specific action (usu-
ally scrolling a window) and saving
any residual rotation count that
exceeded the threshold of 120. In
this way, your software will per-
form identically whether using low
or high-resolution mouse wheels.
Another approach (assuming that
you are scrolling a window) is to
make use of sub-120 values to
perform partial line scrolls.

Thus, if you get a value of 12, you
would scroll by one tenth of a line
height, 60 would scroll by half a
line height and so forth. This will
give a very smooth effect when
working with future high-
resolution mice. Of course, some
software (notably graphics draw-
ing packages) will want to make full
use of high-resolution mice, but
that’s an application-specific
issue.

In another brilliant demonstra-
tion of programming acumen,
Microsoft have encoded the notch
information differently for operat-
ing systems that either do or don’t
support the IntelliMouse natively.
You’d think that after the Register-
WindowMessage obstacle course, the
folks from Redmond would have
relented and made things nice and
straightforward? No, not a bit of
it... Read on... [Ah, but think how
bored you’d get without all these
little challenges! Ed]

Under non-native platforms
(Windows 95 and pre-4.0 versions
of NT) the notch count information
is contained in the entire 32-bit
wParam field of the message. How-
ever, under natively supporting
platforms (Windows 98, NT 4.0 and
later) the notch count is contained

in the high-order 16 bits of the
wParam field, with the modifier keys
(control, shift, etc) in the low-order
word. For non-native platforms,
you have to figure out the modifi-
ers for yourself. In fairness, it’s per-
haps best to assume that this is a
genuine mistake on Microsoft’s
part and that some sort of error
was made in the Windows NT code.
I find it very hard to believe that
they really intended it should work
this way.

The final piece in the jigsaw, in
case you were wondering, is the
direction of wheel rotation. This is
very simple: a positive value for the
notch count indicates that the top
of the wheel is moving away from
the user while a negative value
implies that the wheel is moving
towards the user.

Putting this all together, a typical
WMMouseWheel handler might look
something like that shown in

Listing 4. This code makes use of a
typed constant (a persistent vari-
able which will hold its value from
one invocation of the method to
the next) to store the accumulat-
ing delta value. This caters for the
use of possible future high-
precision mouse wheels. When the
value of Delta exceeds 120, then
the remaining code is triggered.
Notice the presence of the while
loop: this likewise caters for the
possibility that a large Delta value
has been delivered by a single mes-
sage as when (allegedly) the
mouse wheel is moving at speed.
You’ll also notice the two inner for
loops which generate as many
wm_VScroll messages as are
implied by the value of the
scroll-lines variable.

This implementation is only pro-
vided as an example: how you
implement the WMMouseWheel han-
dler will depend very much on
your own individual application.
When you start developing under a
platform that provides native
mouse wheel support, you will find
that a number of the standard Win-
dows controls already have
built-in IntelliMouse support. The
list-box control is a good example
of this: you can take an existing
Delphi application which knows
nothing about the IntelliMouse,
and you’ll find that under Windows
98 (for example) the mouse wheel
will scroll a list-box, provided that
the list-box has the input focus.

procedure TForm1.WMMouseWheel(var Message: TMessage);
const
Delta: SmallInt = 0;

var
Idx: Integer;

begin
Delta := Delta + HiWord (Message.wParam);
while Abs(Delta) >= 120 do begin
if Delta < 0 then begin
for Idx := 0 to fIntelliScrollLines - 1 do
PostMessage (Handle, wm_VScroll, MakeLong (sb_LineDown, 0), 0);

Delta := Delta + 120;
end else begin
for Idx := 0 to fIntelliScrollLines - 1 do
PostMessage (Handle, wm_VScroll, MakeLong (sb_LineUp, 0), 0);

Delta := Delta - 120;
end;

end;
end;

➤ Listing 4

➤ Figure 3: Some
shareware utilities
install a global
message hook
which enables even
non-IntelliMouse
aware applications
to work with the
mouse wheel.
FlyWheel 2 from
Plannet Crafters is
one such example.
You can download
an evaluation version
of FlyWheel 2 from
the Plannet Crafters
website at www.
plannetarium.com

April 1998 The Delphi Magazine 21

This works because the VCL TListBox implementation
is only an object-oriented wrapper around the API-
level list-box code within USER.EXE. Microsoft have
modified the window procedure for this control so as
to recognise and act upon wm_MouseWheel messages,
hence instant support for the IntelliMouse. Of course,
this only works for the VCL classes that directly wrap
the intrinsic Windows controls. A TScrollBox will studi-
ously ignore the mouse wheel, as will a form which is
currently displaying scroll bars.

In next month’s Beating the System I’ll finish off this
IntelliMouse tutorial by packaging up the existing code
into a re-usable component, making it much easier to
incorporate into an existing program, and I’ll also be
describing how to add IntelliMouse support to the
Delphi 3.0 IDE through the use of a special package.

Dave Jewell is a freelance consultant/programmer
and technical journalist specialising in system-level
Windows and DOS work. He is the Technical Editor of
Developers Review which is also published by iTec.
You can contact Dave as Dave@HexManiac.com

	And Then There Were Three... Again!
	So Let’s Get Rolling....
	Anatomy Of the wm_MouseWheel Message

